class MQLClient:
#
Query Functions:# Make a synchronous query with Transform and returns a pandas dataframe of the resultquery( metrics, dimensions, model_key_id=None, where=None, time_constraint=None, time_granularity=None, order=None, limit=None, cache_mode=None, as_table=None, allow_dynamic_cache=True, timeout=None) -> pandas.Dataframe
# Make an asynchronous query with Transform and returns a query status response objectcreate_query( metrics, dimensions, model_key_id=None, where=None, time_constraint=None, time_granularity=None, order=None, limit=None, cache_mode=None, as_table=None, allow_dynamic_cache=True) -> MqlQueryStatusResp
Parameters:
- metrics (List[str]) - list of metric names to query for
- dimensions (List[str]) - list of dimension names to group by
- model_key_id (Optional[int]) - provide model key to perform action on a specific config
- where (Optional[str]) - SQL-like where statement provided as a string
- time_constraint (Optional[str]) - set a time constraint on the query
- time_granularity (Optional[str]) - modify the primary dimension time to a certain granularity (supported granularities: day/week/month/quarter/year)
- order (Optional[str]) - columns to order by ("-" in front of a column means descending)
- limit (Optional[str]) - Limit the number of rows out (Default: 100) using an int or 'inf' for no limit
- cache_mode (Optional[str]) - set a cache option (supported inputs: r/rw/w/i)
- as_table (Optional[str]) - write the results to a specific table
- allow_dynamic_cache (bool) - 'False' to only allow for retrieving results from cache
- timeout (int) - set a timeout value for max time to poll for completion (0 for no timeout)
#
Materialization Functions:# Asynchronous function for creating a materializationcreate_materialization( materialization_name, start_time, end_time, model_key_id=None, output_table=None, force=False) -> MqlMaterializeResp
# Synchronous function for creating a materializationmaterialize( materialization_name, start_time, end_time, model_key_id=None, output_table=None, force=False, timeout=None) -> MqlMaterializeResp
# Asynchronous function for dropping a materializationdrop_materialization( materialization_name, start_time, end_time, model_key_id=None, output_table=None) -> MqlMaterializeResp
Parameters:
- materialization_name (str) - name of materialization to materialize
- start_time (Optional[str]) - iso8601 timestamp to materialize from
- end_time (Optional[str]) - iso8601 timestamp to materialize to
- model_key_id (Optional[int]) - SQL-like where statement provided as a string
- output_table (Optional[str]) - Write materialized result to specified table of format '{schema}.{table_name}'
- timeout (Optional[int]) - set a timeout value for max time to poll for completion (0 for no timeout)
- force (bool) - 'True' to ignore the current cache state and rerun the materialization
#
Observation Functions:list_queries(active_only, limit=None) -> Dict[str, Any]
Parameters:
- active_only (bool) - 'True' to return active queries only
- limit (Optional[int]) - max number of queries to return
# Returns a list of all metrics in a form of {<metric_name>: <Metric object>}list_metrics(model_key_id=None) -> Dict[str, Metric]
Parameters:
- model_key_id (Optional[int]) - provide model key to perform action on a specific config
# Returns a single Metric object given a metric nameget_metric(metric_name, model_key_id=None) -> Metric
Parameters:
- metric_name (str)
- model_key_id (Optional[int]) - provide model key to perform action on a specific config
# Returns a list of all MQL servers within the organizationlist_servers() -> List[MQLServer]
Parameters:
- No parameters required
# Returns a unique list of all dimensionlist_dimensions(model_key_id=None) -> Dict[str, Dimension]
Parameters:
- model_key_id (Optional[int]) - provide model key to perform action on a specific config
# Returns a list of all unique dimension values given a metric/dimension pairget_dimension_values(metric_name, dimension_name, model_key_id=None) -> List[str]
Parameters:
- metric_name (str) - name of metric that has the dimension desired
- dimension_name (str) - name of dimension to query values for
- model_key_id (Optional[int]) - provide model key to perform action on a specific config
# Returns details on the latest MQL server imagelatest_mql_image() -> MQLServerImage
Parameters:
- No parameters required
# Returns a UserState object that describes the authenticated useridentify() -> UserState
Parameters:
- No parameters required
# Returns a response from pinging the selected MQL serverping() -> requests.Response
Parameters:
- No parameters required
# Returns a detailed health report of each MQL server in the organizationhealth_report() -> List[ServerHealthReport]
Parameters:
- No parameters required
#
Config Functions:# Commit yaml configs found in specified config directorycommit_configs(config_dir) -> ModelKey
Parameters:
- config_dir (str) - path to directory containing Transform yaml models
# Validate yaml configs found in specified config directoryvalidate_configs(config_dir) -> Tuple[str, str, str]
Parameters:
- config_dir (str) - path to directory containing Transform yaml models
#
Misc. Functions:# Drop the MQL cache. Only necessary if there is evidence cache corruptiondrop_cache()
Parameters:
- No parameters required